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Abstract. In the present paper the problem of modeling the
propagation of potential debris flows is tackled resorting to
a numerical approach. In particular, numerical analyses are
carried out with the RASH3D code, based on a single-phase
depth-averaged continuum mechanics approach.

Since each numerical analysis requires the selection of
a rheology and the setting of the rheological input param-
eters, a calibration-based approach, where the rheological
parameters are constrained by systematic adjustment during
trial-and-error back-analysis of full-scale events, has been as-
sumed.

The back-analysis of a 1000 m3 debris flow, located at
Tate’s Cairn, Hong Kong, and the forward-analysis of a
10 000 m3 potential debris flow, located in the same basin
have been used to investigate the transferability of back-
calculated rheological parameters from one case to another.
Three different rheologies have been tested: Frictional,
Voellmy and Quadratic.

From obtained results it emerges that 1) the back-
calculation of a past event with different rheologies can help
in selecting the rheology that better reproduces the runout of
the analysed event and, on the basis of that selection, can
give some indication about the dynamics of the investigated
flow, 2) the use of back-calculated parameters for forward
purposes requires that past and potential events have similar
characteristics, some of which are a function of the assumed
rheology. Among tested rheologies, it is observed that the
Quadratic rheology is more influenced by volume size than
Frictional and Voellmy rheologies and consequently its ap-
plication requires that events are also similar in volume.
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(marina.pirulli@polito.it)

1 Introduction

Debris flows are made up of soil, rock, and water. Their
flow characteristics, depending on the dynamic interaction
between solid and fluid phases during propagation, are a
function of the percentage of each of the above mentioned
elements.

Since mechanisms that regulate such an interaction are not
yet fully understood and their numerical implementation still
remains a rather difficult task, currently available numerical
models inevitably rely on simplifying assumptions. How-
ever there is a clear need for these models, as hazard evalua-
tion or mitigation-measure design tools, because debris flows
continue to cause significant damage in mountainous regions
(Naef et al., 2006).

Existing runout prediction methods may be broadly cat-
egorized either as empirical or dynamic in nature. Em-
pirical models are typically based on limiting criteria (e.g.
Benda and Cundy, 1990; Fannin and Rollerson, 1993,
1996) or on statistical relations (e.g. Cannon, 1993; Rick-
enmann, 1999). Although they are often easy to use, they
should only be applied to conditions similar to those on
which their development is based (Rickenmann, 2005). Dy-
namic models may incorporate a rigid-body analysis, such
as the mass-based approaches of Perla et al. (1980) and Van
Gassen and Cruden (1989), or the energy-based approach
of Körner (1980). Alternatively, dynamic models may con-
sider a deformable-body approach using principles of con-
tinuum mechanics (e.g. Savage and Hutter, 1989; O’Brien et
al., 1993; Hungr, 1995; Iverson and Denlinger, 2001; Mc-
Dougall and Hungr, 2004), with the advantage of making
possible the simulation of the deformation of the moving
mass along the flow path, including deposition (Fannin and
Wise, 2001).

It is probably fair to state that Savage and Hutter, in 1989,
developed the first continuum mechanical theory capable of
describing the evolving geometry of a finite mass of gra-
nular material and the associated velocity distribution as an
avalanche slides down inclined surfaces.
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Depth-averaging momentum and mass conservation equa-
tions, they obtained one-dimensional shallow-flow equations
in a formulation in which a complete description of the flow
is avoided and a Coulomb equation for basal shear resistance
is assumed.

Subsequent generalizations of the Savage-Hutter approach
have included extension to multidimensional flows, incre-
mentally advancing to a stage in which reliable application
to complex phenomena appears within reach. It results that
many of the models developed in the past three decades
are based on single-phase solutions of the above mentioned
depth-averaged equations of motion and relatively simple
single-phase rheological relationships, which define resis-
tance acting at the base of the assumed depth-averaged flow
(e.g. Chen and Lee, 2000; McDougall and Hungr, 2004; Den-
linger and Iverson, 2004; Pirulli, 2005; Christen et al., 2007).

However, selecting a rheological relationship and setting
values of its rheological parameters, to define the flow cha-
racteristics, still remain an open problem, that can be nowa-
days dealt with by following either a measurement-based ap-
proach or a calibration-based approach (McDougall et al.,
2008).

Parameter measurement is advocated by workers who
maintain that parameters to use for the analysis of real cases
can be obtained through controlled laboratory experiments.
Although it is scientifically appealing to be able to measure
the input parameters, no standard experiments are available
to measure, for example, the properties of complex debris
flows travelling at extremely rapid velocities. Such proper-
ties, even if measurable, may be scale dependent.

That is why a calibration-based approach, where the rheo-
logical parameters are constrained by systematic adjustment
during trial-and-error back-analysis of full-scale events, is
pursued by many authors. In this frame, simulation of a his-
torical event is typically achieved by matching the simulated
travel distance, velocities and extent and depth of the deposit
to those observed on site. The back-calculation of rheologi-
cal parameters makes simpler the study of past complex phe-
nomena like debris flows and provide calibrated input param-
eters to use for first-order runout forward-analyses. But, the
effectiveness of their use in forward-analyses is however a
function of the degree of similarity between historical and
potential event characteristics.

It is demonstrated that flow composition (fluid vs. solid)
and slope lithology and morphology influence the behaviour
of a flow (e.g. Pirulli, 2010), so these aspects certainly have
to be taken into consideration when similarity between two
cases is being estimated.

In the present paper, a series of numerical analyses are in-
stead carried out in order to investigate if the volume of the
released mass can also be a factor to consider when assessing
the similarity of two events. To this aim, the back analysis
of a 1000 m3 debris flow, which took place at Tate’s Cairn
(Hong Kong) in August 2005, is undertaken with the one-
phase continuum-mechanics-based code RASH3D (Pirulli,

2005) and three different rheological laws are tested (Fric-
tional, Voellmy, Quadratic). Calibrated rheological parame-
ters are then used for predicting the evolution of a 10 000 m3

potential event. Being the triggering area of the historical
and potential events next to each other, similarity in litho-
logical and morphological characteristics can be reasonably
assumed.

The runout obtained by using the three rheological laws
are then compared and discussed.

2 From continuum dynamic modelling
to the RASH3D code

Continuum dynamic modelling has improved considerably
in the past three decades and has gradually emerged as a use-
ful tool for landslide runout analysis and risk assessment.
With increasing attention and coinciding advances in com-
putational capabilities, a large number of models (e.g. DAN,
DAN-3D, DFEM, FLO-2D, RAMMS, SHWCIN, TITAN2D
and many others) have been developed or are currently in
development. Several of these models have included inno-
vations that have significantly advanced both our ability to
simulate real events and our fundamental understanding of
rapid landslide processes (McDougall et al., 2008).

The continuum approach implies that the real moving mix-
ture of the solid and fluid phases is replaced with a homoge-
neous continuum, whose rheological properties are intended
to approximate the bulk behaviour of the real mixture, and
motion is described using a model that consists of the bal-
ances of mass and momentum, namely

∇ ·v = 0 (1)

ρ

(
∂v

∂t
+v ·∇v

)
= −∇ ·σ +ρg (2)

wherev(= vx,vy,vz) denotes the velocity vector in anx, y

andz reference system,σ (x,y,z,t) is the Cauchy stress ten-
sor,ρ the mass density, andg the vector of gravitational ac-
celeration.

Furthermore, assuming that the vertical structure of the
analysed flow (i.e. depth) is much smaller than its character-
istic length allows one to integrate the balance Eqs. (1)–(2)
in depth and to obtain the so-called depth-averaged equations
of motion (Savage and Hutter, 1989):
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wherevx, vy denote the depth-averaged flow velocities in the
x- and y-directions (z is normal to the topography),h is the
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fluid depth,τzx, τzy the shear resistance stresses (transverse
shear stressτxy is neglected),σxx, σyy the depth-averaged
normal stress andgx, gy the projection of the gravity vector.

In the present paper, the RASH3D (Pirulli, 2005; Pirulli
et al., 2007), based on the above described assumptions, is
applied for carrying out numerical analyses.

In RASH3D, the governing Eq. (3) are solved in an Eule-
rian framework on a triangular finite element mesh through
a kinetic scheme based on a finite volume approach. A com-
plete description of the numerical implementation used in
the code and of the results of its testing against controlled
experiments is given in Audusse et al. (2000), Bristeau and
Coussin (2001), Mangeney et al. (2003), Pirulli (2005) and
Pirulli et al. (2007).

2.1 Rheological models

Mud flows (e.g. Costa, 1984) and stony debris flows (e.g.
Takahashi, 1991) are flows with a considerable proportion of
fine material and flows where the coarser particles dominate
the flow behaviour, respectively.

Mud flows may be described as a Newtonian or Bingham
fluid in the laminar flow regime.

For large flow velocities a flow may show turbulent be-
haviour, suggesting that laminar flow resistance relations
may be inappropriate (Rickenmann, 1999). For coarse-
grained debris flows or granular debris flows where grain col-
lisions dominate the flow behaviour a turbulent flow regime
becomes the more appropriate. Nevertheless, the simple
turbulent flow cannot alone describe the stopping of motion
on gently sloping surfaces, so an additive Coulomb or fric-
tion term is however necessary for describing this mecha-
nism.

It follows that to account for the fact that different debris
flows may present different behaviours and that a debris flow
behaviour may change from one regime to another within
the same flow, additive combinations of basic flow regimes
(i.e. frictional, turbulent, viscous) are discussed in the present
paper.

In the simpleFrictional rheologythe resisting shear stress,
τ , at the base of the flowing mass is assumed to depend only
on the normal stress (i.e. it is independent of velocity).

τzi = −(ρgzhtanϕ)sgn(vi) (where i = x,y) (4)

whereρ is the material bulk density,gz is the normal projec-
tion to the slope of the acceleration due to gravity,h is the
flow depth,v

(
= vx,vy

)
is the depth-averaged flow velocity

andϕ is the bulk basal friction angle.
Only one parameter, that is the bulk friction angle, has to

be calibrated if this rheology is selected.

The Voellmy rheologyadds to the above frictional term a
turbulent term to account for all velocity-dependent factors
of flow resistance. The resulting shear resistance stress is
given by the following equation:

τzι=−

(
ρgzhtanϕ′

+
ρgvi

2

ξ

)
sgn(vi) (wherei=x,y) (5)

whereξ is the turbulence coefficient (ξ=C2, whereC is the
Chézy coefficient),ϕ’ which is equivalent toϕ in (4) above;
the others terms are similar as in Eq. (4).

Two parameters, that are the friction angle and the turbu-
lence coefficient, have to be calibrated if this rheology is se-
lected.

Finally, in the Quadratic rheologythe shear resistance
stress is provided by the following expression:

τzι=−

(
τy +

Kη|vi |

8h
+

ρgn2vi
2

h1/3

)
sgn(vi) (wherei=x,y) (6)

whereτy is the Bingham yield stress,η is the Bingham vis-
cosity,n is the equivalent Manning coefficient for turbulent
and dispersive shear stress components (h1/3/n2=ξ ) andK is
the flow resistance parameter; the others terms are similar as
in Eq. (4).

The first and the second terms on the right hand side of
Eq. (6) are the constant yield shear strength term and the vis-
cous term as defined in the Bingham equation, respectively.
The last term represents the turbulence contribution (O’Brien
et al., 1993).

Three parameters, that are the yield stress, the viscosity
and the Manning coefficient, have to be calibrated if this rhe-
ology is selected.

The above three rheologies are implemented in the
continuum-mechanics-based code RASH3D that is applied
in the present work.

RASH3D, as the other continuum mechanics runout
codes, is unable of simulating landslide triggering mecha-
nisms. That is, numerical simulations only concern the anal-
ysis of propagation and deposition of the flowing mass along
the runout path. Nevertheless, effects of the above mecha-
nisms on a debris flow propagation can be, in some measure,
considered.

Taking into account that the more the runout length of a
debris flow the less the influence of the triggering mecha-
nism on the flow propagation (e.g. for long runout path the
triggering mechanisms influences only the initial and rela-
tively short stretch of the debris flow path), the triggering
mechanism effect can be numerically reproduced changing
the adopted rheology or the values of rheological parameters
along the runout path. As an example, a movement whose
triggering is characterised by sliding of a relatively massive
volume that breaks during propagation and turns into a flow-
ing mixture can be obtained using a Frictional rheology in
the initial part of the path and then a Voellmy rheology.
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Fig. 1. Location and layout plans of the study area (modified after
MGS, 2007).

This numerical application would increase the complexity
of the problem, having to calibrate a large number of param-
eters of which little is known, and its validity could not be
verified on site, since no case histories are sufficiently doc-
umented to allow for a detailed comparison among site and
numerical results.

Furthermore, it is here evidenced that rheological proper-
ties used in continuum mechanics modelling are intended to
simulate the bulk behaviour of an analysed landslide (from
triggering to deposition) and do not correspond to the prop-
erties of any of the slide components. The use of aver-
age parameters, obviously without neglecting key factors
for the phenomenon comprehension, has made continuum-
mechanics based models particularly interesting for decision
makers and hazard assessment in the last years.

3 Description of the study area

The August 2005 debris flow and the adjacent distressed
area, which are object of the present study, are located on
a north-northeast facing hillside, about 200 m to the north
of Tate’s Ridge and about 500 m south of Kwun Ping Road,
Kwun Yam Shan, Hong Kong (Fig. 1).

The site is within, and adjacent to, a densely vegetated,
linear topographical depression (about 60 m wide by 100 m
in length) between two rounded spurlines and at the head of
an ephemeral drainage line (Fig. 1).

The area is characterised by a deeply weathered thermally
metamorphosed volcanic terrain with a mantle of colluvium.
The colluvium is bouldery and about 5 m thick, while the

Fig. 2. The August 2005 debris flow:(a) oblique aerial view;(b)
general view of the main scarp (modified after MGS, 2007).

underlying volcanic tuff saprolite is up to 30 m thick and
in which corestone development appears relatively common.
Many of the relict joints in the saprolite have a kaolin infill, a
manganese oxide coating and are slickensided (MGS, 2007).

3.1 The August 2005 debris flow at Tate’s Cairn

In the early morning of 22 August 2005, following heavy
rainfall on 19 and 20 August 2005, a debris flow was re-
ported in the west side of the mouth of the above mentioned
topographical depression and above a convex break-in-slope
(Figs. 1–2). The crown of the debris flow source area resulted
at an elevation of about 448 m a.s.l. with the toe located at
about 430 m a.s.l.

The aerial photographic records indicate that the debris
flow occurred at about the same location as two smaller
pre-1956 events. The previous instability and progressive
degradation of the hillside appear typical of a hillside retreat
process. Both surface runoff and subsurface flow would be
directed towards the event site at the head of the drainage line
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and the presence of an interconnected subsurface drainage
network would have promoted rapid groundwater flow to the
debris flow site (MGS, 2007).

The August 2005 failure involved up to 5-m depth of
colluvium with a total volume of about 2350 m3. A large
portion of the displaced material (about 1350 m3) remained
within the source area as intact rafts separated by a series of
stepped tension cracks. The rest of the detached mass (about
1000 m3) entered the ephemeral drainage line below, and de-
veloped into a channelised debris flow (Fig. 1). The mass
travelled a total distance of about 330 m down the drainage
line and came to rest at two distinct boulder dams within the
drainage line.

The difference in elevation between the landslide source
and the end of the debris trail was approximately 138 m, with
a travel angle of about 24◦ (Wong and Ho, 1996).

A detailed field mapping of volumes of material deposited
along the runout path is presented in Fig. 3.

As a consequence of the event an approximately 10-m sec-
tion of the MacLehose Trail, that is about 30 m to the north
of the toe of the August 2005 debris flow source area, was
severed but no casualties were reported.

3.2 The distressed hillside at Tate’s Cairn

A detailed inspection of the hillside above the August 2005
debris flow in March 2006 revealed an extensive system of
tension cracks (Fig. 1). These tension cracks define an area of
distressed hillside located on the southeast side of the August
2005 debris flow source area. The possible toe of this dis-
tressed hillside lies at an elevation between 430 m a.s.l. and
440 m a.s.l. and has an average inclination of about 20◦

−25◦

(Fig. 1).
The hillside above the distressed hillside is vegetated and

is inclined at about 30◦, gradually reducing to about 15◦ near
Tate’s Ridge located about 100 m to the south. The hillside
below the study area is densely vegetated and is inclined at
about 30◦ to 40◦ that gradually reduces to 10◦ to 20◦ along
the streamcourse.

The majority of the tension cracks as identified in March
2006 appeared fresh and may have occurred subsequent to
the August 2005 debris flow. Evidence on the distressed
hillside (viz. hummocky morphology, leaning trees, possible
weathered patina on the southernmost tension crack), how-
ever suggests that initial movement of the distressed hillside
most likely predates the August 2005 event and that initial
development of at least part of the tension cracks may have
been a result of earlier rainstorms. Given that the majority
of the tension crack faces appeared fresh, the largest propor-
tion of movement is postulated to have likely been triggered
by the August 2005 rainstorm. The possibility of the fresh
tension cracks being a reactivation of the distressed hillside
due to the severe rainstorm in August 2005 cannot be ruled
out (MGS, 2007).

Fig. 3. The August 2005 debris flow – detailed field mapping of
volume of material deposited along the runout path (modified after
MGS, 2007).

Theoretical stability analyses of the distressed hillside
were carried out to evaluate potential failures with respect
to different possible groundwater regimes and shear strength
parameters along a pre-defined failure surface. Based on the
geological model, the failure along the interface of colluvium
and tuff, at a depth of about 5 m, would involve a volume
of about 10 000 m3 and would be plausible with a perched
groundwater of about 1.3 m below ground surface (MGS,
2007).
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4 Numerical analyses of historical and potential debris
flows at Tate’s Cairn (Hong Kong)

A digital elevation model (DEM) with a 5-m-grid resolution,
built on a Geographic Information System platform from the
published 1:1000 topographic maps and spot heights, was
available for the back-analysis of the August 2005 debris
flow (1000 m3) and the forward-analysis of the distressed
hillside potential debris flow (10 000 m3).

As a general rule, calibration of rheological parameters
have to ensure that the best simulation is obtained of the over-
all runout distance and distribution of velocities, flow depths
and deposit thicknesses (e.g., Ayotte and Hungr, 2000). But,
only on very rare occasions are these information simultane-
ously available. As an example, for the case history here
analysed, available data concerned the overall runout dis-
tance and deposit thickness distribution (see Fig. 3).

It is well known that the higher the number of rheologi-
cal parameters (e.g. Quadratic vs. Frictional), the greater the
difficulty in constraining them by a systematic adjustment in
the back analysis. Furthermore, the number of rheological
parameter combinations that apparently gives a satisfactory
numerical back-analysis grows up when the number of site
information diminishes. That is, any of these combinations
could be acceptable, if no information about the velocity, the
depth distribution in the deposit and the physical state of the
flowing mass is available.

For the August 2005 debris flow, the best combination of
rheological parameters was selected ensuring the best simu-
lation of not only the overall runout distance but also of the
deposit thickness distribution. At first, results that were not
able to reproduce the actual runout distance and spread of the
mass in a satisfactory way were rejected. Then, the deposit
thickness distributions obtained with the remaining combi-
nations were compared with the actual distribution and other
combinations were rejected. This allowed to select the best
combination of parameters also when complex rheologies are
used.

4.1 Back-analysis of the August 2005 debris flow

First the August 2005 debris flow is analysed to calibrate
rheological parameters of each selected rheology (i.e. Fric-
tional, Voellmy, Quadratic). The best results in terms of
overall runout distance and deposit thickness distribution are
obtained using:

– ϕ=27◦, in case of Frictional rheology;

– ϕ′
=25◦ andξ=1000 m/s2, in case of Voellmy rheology;

– τy=1.2 kPa−η=40 Pa s−n=0.03, in case of Quadratic
rheology.

The calculated sequence of movements in terms of depth are
visualized in Figs. 4, 5 and 6, respectively. In each figure, a

Fig. 4. The August 2005 debris flow – dilled depth contours of
sliding debris (Frictional rheology). The dotted line indicates the
extent of the real event (propagation + deposit).

splitting of the mass in the final part of the deposit emerges
due to the existence of two boulder dams that were probably
formed in previous landslide incident(s).
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M. Pirulli: Calibration-based approach for debris-flow forward-analyses 1015

Fig. 5. The August 2005 debris flow – Filled depth contours of
sliding debris (Voellmy rheology). The dotted line indicates the
extent of the real event (propagation + deposit).

Observing the shape of the obtained deposits, it immedi-
ately emerges that the Quadratic is the more realistic solu-
tion. The Frictional and the Voellmy rheologies give too

Fig. 6. The August 2005 debris flow – depth contours of sliding
debris (Quadraticl rheology). The dotted line indicates the extent
of the real event (propagation + deposit). Contours are at 0.05 m
intervals.

short deposits: they are not able to simulate the accumulation
of debris in the upper part of the runout path, which at the
contrary emerges in the detailed field mapping of the event
(Fig. 3). Besides, the Frictional solution gives an excessive
deposit spread.

Concerning the deposit depth distribution, the Frictional
rheology tends to produce deposits thick in the proximal part
and thin in the front. The Voellmy rheology produces rather
uniformly distributed deposits. The Quadratic model pro-
duces relatively uniform depth, leaving, thanks to the viscous
term, an amount of deposits on the proximal part of the flow
path. As to the deposit maximum depths, the three rheologies
give results that differ in terms of both value and position; the
higher value is reached in the proximal part of the Frictional
deposit (1.35 m), the intermediate value is observed along the
Voellmy deposit (0.95 m) and the lower value is in the distal
part of the Quadratic deposit (0.30 m).

www.nat-hazards-earth-syst-sci.net/10/1009/2010/ Nat. Hazards Earth Syst. Sci., 10, 1009–1019, 2010
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None of the three rheologies is able to completely repro-
duce the deposit characteristics. The Voellmy and the Fric-
tional do not produce good results in terms of neither de-
posit shape nor average depth of debris distribution, while the
Quadratic produces the best results in terms of deposit shape
and average depth of debris distribution but not in terms of
maximum depth.

The calculated velocity trend evidences that velocities
increase rapidly with a local maximum nodal velocity of
13.08 m/s and a maximum mean velocity of 8.56 m/s at
t=20 s using the Frictional rheology; a local maximum
nodal velocity of 6.52 m/s and a maximum mean velocity of
4.48 m/s att=10 s using the Voellmy rheology; and a local
maximum nodal velocity of 13.64 m/s and a maximum mean
velocity of 6.65 m/s att=10 s using the Quadratic rheology.
Unfortunately, information regarding movement velocity is
not available and consequently no comments can be made on
the above velocity field distributions.

4.2 Analysis of the distressed hillside

The above results show that past events can be modelled
with reasonable accuracy by finding the matching param-
eters through trial and error. In fact, when comparing the
model simulation results with observations of the natural de-
bris flow, it is possible to achieve a reasonable agreement
between main predicted and observed characteristics. How-
ever, it is still difficult to produce predictions of the most
likely runout beforehand.

When back-analysed rheological parameters are used to
run forward-analyses, a first uncertainty to be faced concerns
the possibility that the potential event can have mixture com-
position and consequently flow characteristics (dynamic in-
teraction between solid and fluid phases during propagation)
different from those of the considered case history.

This is way the comparison among events located in the
same basin, making improbable a large difference in mixture
composition from one case to another, is here carried out and
is suggested as rule.

Furthermore, to face the possible role of volume in chang-
ing the flow characteristics and consequently values to use
for rheological parameters, the condition of no entrainment
along the runout path has been assumed.

Entrainment, adding material with different characteristics
(e.g. water content) to the flowing mass, is one of the main
factors that can change both a flow volume and characte-
ristics.

At first sight, flow characteristics and dynamics of large
volumes can appear very different from those of small volu-
mes. But, in the hypothesis that two masses, with a different
volume and the same mixture composition, are released on a
similar topography, the difference in volume does not play a
major role on the rheological properties of the two flows, un-
less a change in flow composition originates along the runout
path. In general, on an erodible bed, the entrainment capabi-

Fig. 7. Distressed hillside – filled depth contours of sliding debris.
Comparison among Frictional, Voellmy and Quadratic rheologies
using the best fit parameters obtained for the August 2005 debris
flow. The dotted line indicates the extent of the August 2005 debris
flow (propagation + deposit).

lities of the volumes are wider than those of small volumes,
this is why the flow characteristics of the first appear very
different from those of the second one.

On the base of the above observations, assuming that the
historical and the potential investigated debris flows are char-
acterised by no entrainment along the runout path and are
similar in flow characteristics and dynamics (i.e. they have
approximately the same mixture composition), the forward-
analysis of the distressed hillside is here carried out with the
rheological parameters back-calculated for the August 2005
debris flows. The obtained deposits are visualized in Fig. 7.

Large differences in terms of overall runout distance
emerge between the Frictional and the Voellmy solutions and
the Quadratic one (Fig. 7). In particular, the first two de-
fine a rather similar runout, even if with the Frictional rhe-
ology much of the landslide volume remains in the source
area. While, the frontal end of the debris flow runs beyond
the available DEM domain when the third rheology is used.

Since the similarity in lithological and morphological cha-
racteristics of the two events is guaranteed (being the trig-
gering area of the historical and potential events next to each
other), the obtained results have induced an in-depth inves-
tigation on the role of landslide volume when using back-
analysed rheological parameters for forward-analyses. In
fact, assumed rheological values originate from a flowing vo-
lume that is 10 times smaller (1000 m3) than that of the dis-
tressed hillside (10 000 m3).
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Fig. 8. Distressed hillside – Filled depth contours of sliding debris assuming a volume of 1000 m3 and the rheological parameters calibrated
through the back-analysis of the August 2005 debris flow. The dotted line indicates the extent of the August 2005 debris flow (propaga-
tion + deposit). (A1) Triggering area, (A2) Frictional rheology, (A3) Voellmy rheology, (A4) Quadratic rheology.

The depth of the distressed hillside volume is then cut by
90% and a volume of about 1000 m3, with the same basal
area, is tested. The propagation of the new volume (1000 m3)
is then analyzed with the back-calculated parameters and re-
sults are represented in Fig. 8. It emerges that the three
rheologies give again a similar runout distance when the
historical and potential events have approximately the same
volume.

5 Discussion

The single-phase approach to describe debris flows ignores
experimental evidences of dynamic pressures arising from
the grain collisions in granular flows (Iverson, 1997) which
suggest that rheological relations that do not include such
normal stress effects are an oversimplification (Naef et al.,
2006). However, as pointed out by Hungr (2006) intergran-
ular friction forces may implicitly be accounted for in the
frictional and velocity-dependent flow resistance terms. As a
consequence, if field data from the catchment can be used to
calibrate the flow resistance coefficient, a one-phase model
can be apply to estimate in a first step areas potentially af-
fected by overhanging events. Nevertheless, being a flow
behaviour widely influenced by both flow and slope cha-
racteristics, particular care is necessary for transferring back-
calculated parameters to forward-analyses.

For the field case back-analysed in the present paper,
where the event volume, the runout distance and some as-
pects of the deposition pattern (e.g. deposit thickness distri-
bution) are known, three rheologies have been tested (i.e.
Frictional, Voellmy, Quadratic). This has made possible
some considerations on the role of each rheological param-
eter in simulating a flow characteristics and consequently
some first indication on the dynamics of the studied debris
flow. In fact, assuming that the dynamic effective friction
angle of rapidly shearing dry rock fragments is about 30◦

and considering that pore-fluid pressure can halve the shear
strength, the bulk friction angles obtained in both the Fric-
tion (27◦) and the Voellmy (25◦) solutions would evidence
a minor role of water pressure on the analysed event prop-
agation. Furthermore, since transition from turbulent flow
to laminar flow is numerically simulated with a gradual in-
crement of the turbulence coefficient,ξ (Voellmy rheology),
or decrement of the Manning coefficient,n (Quadratic rhe-
ology), the coefficient used in both the Voellmy (1000 m/s2)
and the Quadratic (0.03) solutions would evidence a flow in
which the turbulent component has had a minor role in the
energy dissipation respect to the frictional component. In
fact, the calibrated rheological parameters have values that
are more typical of laminar flow simulations (e.g. Pirulli and
Sorbino, 2008).

The application of back-calculated rheological parameters
to the potential event next to the triggering area of the his-
torical event has instead highlighted that particular care is
necessary in using back-calculated Quadratic parameters for
prediction purposes.

Unlike fluids, granular materials can sustain a given stress
without deforming. The transition between a static state
(v=0) and a flowing state is generally simply modelled, in
depth-averaged models, as a function of the shear strength
generated at the interface between the slope and the flowing
mass and, in particular, it depends on the ratio of the resist-
ing shear stress and the displacing shear stress. Motion is al-
lowed only if the norm of the displacing shear stress exceeds
the resisting shear stress (= flowing condition).

It is well known that the displacing shear stress directly de-
pends on the flow depth; as a consequence, from the analysis
of three rheologies adopted in the presented paper it results
that:

– in case of a Frictional rheology (see Eq. 4), the resisting
shear stress also directly depends on the flow depth (h)
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and, consequently,h does not influence and could be
suppressed from the mass flowing condition;

– in case of a Voellmy rheology (see Eq. 5), the resisting
shear stress is made of one term that directly depends on
the flow depth (the frictional term) and one term that is
independent of the flow thickness (the turbulent term).
As a consequence,h cannot be suppressed from the
flowing condition and, since both the terms contribute
in defining the resisting shear stress, the Voellmy resist-
ing shear stress usually results higher than the Frictional
resisting shear stress;

– in case of a Quadratic rheology (see Eq. 6), the Bing-
ham yield stress is independent from the flow depth,
while both the viscous and the turbulent terms of the re-
sisting shear stresses depend on the inverse of the flow
thickness. It follows that an increase ofh determines an
increase of the displacing shear stress and a decrease of
the resisting shear stress, and vice versa.

Since, flow characteristics being equal, the flow depth (es-
pecially the maximum depth that the flow can reach) can be
considered representative of the moving mass volume, the
above observations can be used to evidence that:

– the Frictional rheology is not influenced by flow
depth/volume;

– the Voellmy rheology depends on flow depth/volume.
An increase ofh determines both an increase of the
displacing shear stress and of the resisting shear stress.
In particular, in case of laminar flow the turbulent term
vanishes (since a high value of the turbulent coefficient,
ξ , is necessary for simulating this type of flow) and the
Voellmy rheology gives a mass behaviour close to that
obtained with a Frictional rheology. While, in case of a
turbulent flow, the turbulent term contributes in defining
the resisting shear stress;

– the Quadratic rheology is widely influenced by flow
depth/volume. The larger is the moving mass volume,
the larger is the flow depth (especially the maximum
flow depth). Also the displacing shear stress must be
larger the resisting shear stress is smaller.

Since, for a Quadratic rheology, displacing and resisting
shear stresses have, respectively, a concordant and discordant
trend, with respect to the flow depth/volume, particular care
is necessary in transferring calibrated rheological parameters
among cases dissimilar in volume.

The Frictional rheology does not present problems of this
type. The same can be stated for a Voellmy rheology, in fact:
it is based on a resisting shear stress whose formulation re-
flects that of the Frictional rheology and differences between
the two rheologies derive from a term (the turbulent tern) that
is independent of the flow depth.

6 Conclusions and further developments

The back-analysis of a 1000 m3 debris flow, located at Tate’s
Cairn, Hong Kong, and the forward-analysis of a 10 000 m3

potential debris flow, located in the same basin, have been
carried out to investigate the transferability of calibrated rhe-
ological parameters from a back-analysed case to a potential
case.

To this aim, three different rheologies have been
tested: Frictional, Voellmy and Quadratic. For the
analysed case history, the back-calculated rheological pa-
rameters have resultedϕ=27◦ for the Frictional rheol-
ogy, ϕ’=25◦

−ξ=1000 m/s2 for the Voellmy rheology and
τy=1.2 kPa−η=40 Pa s–n=0.03 for the Quadratic rheology.

These results have made possible some first considerations
on the dynamics of the analysed historical event. In particu-
lar, it has emerged that a frictional rather than turbulent be-
haviour has dominated the flow propagation. While, a vis-
cous component has allowed deposition of debris along the
runout path.

When used for prediction purposes, the above calibrated
parameters do not have converged in a unique solution. In
particular, the overrun of travel distance for the Quadratic
rheology respect to the others has made evident that the
Quadratic rheology, due to its mathematical formulation, is
largely influenced by flowing volume size.

This point has underlined that in a calibration-based ap-
proach particular care is necessary in comparing events not
only similar in lithological and morphological characteristics
but also in those aspects that can assume a predominant role
as a function of the selected rheology. On this regard, impor-
tant indications have been obtained from the mathematical
formulation of the applied rheologies.

To give a stronger support to the considerations made in
the present paper, further developments of this research will
entail the back-analysis of other well documented events. In
particular, the analysis of case histories characterised by the
presence of both small and large volumes will be carried out
to give further support to the present conclusions and prop-
erly check how much the inverse dependence of the rheolog-
ical law from the flow depth can really influence the mass
propagation.

In any case, it is here further stressed that the calibration-
based approach can be considered a useful tool in landslide
forward analysis and hazard assessment when particular care
is used in its application.
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