

Evaluación de Corrientes Inducidas Geomagnéticamente (GICs) en Transformadores AT/AT de Cataluña

J. Miquel Torta, Lluís Serrano Observatori de l'Ebre. CSIC – URL jmtorta@obsebre.es, http://www.obsebre.es

Transformer failures in regions incorrectly considered to have low GIC-risk

C. T Gaunt, G. Coetzee

Fallo en un transformador de 700MVA en una central eléctrica sudafricana después de la tormenta de *Halloween* de octubre de 2003. Extraída de *Thomson et al.*, (2010).

 Variación del campo geomagnético (componente horizontal - ∆H, en nT) y su derivada (en nT/min) correspondientes a las *Halloween storms* (29-31 octubre 2003) en el Observatorio de Hermanus (HER), Sudáfrica, y en el Observatorio del Ebro (EBR)

Las grandes tormentas geomagnéticas desde 1868 identificadas por el índice geomagnético aa*. Superpuesto en rojo se presenta la evolución del número mensual suavizado de manchas solares. Se ha utilizado un umbral de 80 nT para identificar las mayores tormentas. Gris: períodos sin datos en EBR. Adap. de *Thomson et al.* (2010).

Northern Hemisphere Regions at Risk from Future Storms

Figure 1: Exposed Regions of the Northern Hemisphere. The footprints of a superstorm can be extensive, the above diagram shows the regions of the Northern Hemisphere that can be exposed to intense storm activity such as the Great Geomagnetic Storm of March 1989. For perspective, the level of storm severity that precipitated the Hydro Quebec collapse was observed at locations as far south as those depicted by the green contour line, which would encompass most of North America and Europe (as shown in green). Much stronger intensities were observed at more northerly locations (as outlined in red), these intensities are approximately 5 times more severe than the levels that triggered the Hydro Quebec collapse. Levels of one-half the intensity of those that triggered the Hydro Quebec collapse have also shown to be capable of causing power reliability problems, which for this storm extended to even lower latitudes (as shown in blue).

- El campo geoeléctrico no solamente se ve afectado por las corrientes ionosféricas variables en el espacio y en el tiempo, sino que depende también de la conductividad del suelo. Y, a su vez, las corrientes inducidas en los neutros de los transformadores dependen de la topología de la red y de las características de los mismos.

Fluctuating Electrojet, (Millions of Amps)

> Magnetic Field from electrojet induces voltage potential on surface of earth

GIC enters power system through ground connections

Voltage Gradient

Electric potential induced on earth surface up to 6 Volts/km causes Geomagnetically-Induced Currents Large currents can be induced to flow through highly conductive seawater

Coastal areas cause abrupt transition in conductivity between resistive rock geology and seawater

3D Conducting Earth

Modelización de las GICs

Geofísica

• Determinación de las componentes del campo geoeléctrico (suposición de onda plana y conductividad uniforme*):

$$E_{x,y}(t) = \pm \frac{1}{\sqrt{\pi\mu_0\sigma}} \int_{-\infty}^t \frac{1}{\sqrt{t-u}} \frac{dB_{y,x}(u)}{dt} du$$

 $^{*}\sigma$ = 10⁻³ S/m

Ingeniería Eléctrica

- Cálculo del flujo de las GICs en la red eléctrica
 - Modelo del circuito en CC.

Componentes Este (E_y) y Norte (E_x) del campo geoeléctrico

Modelización de la Red Eléctrica:

Cálculo de las corrientes (CC.) que circulan a tierra en cada nodo por aplicación de las leyes de Kirchhoff \rightarrow Formulación matricial

Lehtinen & Pirjola, 1985

Datos utilizados para calcular las matrices de admitancia de la red y de impedancia a tierra para el cálculo de las GIC:

· Posiciones geográficas de cada subestación y conexiones

· Resistencias de las líneas

Resistencia de la línea, longitud, núm. de conductores/fase y núm. de líneas

· Resistencias de cada subestación

Suma de las resistencias de los transformadores con todas las fases en paralelo y resistencias de las reactancias.

Posibles configuraciones de transformadores

Transformador en la subestación de Vandellòs

Modelización de las GICs

Combinación de los apartados de Geofísica y de Ingeniería Eléctrica:

1)CALCULO DE LAS GIC'S EN CADA NODO

Una vez el campo eléctrico asociado a las variaciones geomagnéticas es conocido y los elementos de las matrices de impedancia de la red resueltos, el cálculo de las GIC's es directo:

 $I_{GIC}(t) = aE_x(t) + bE_y(t)$

donde *a* y *b* son parámetros constantes [A Km / V] para cada nodo que dependen de la geometría y de las resistencias de la red. Se obtienen mediante la aplicación de campos de 1 V / Km en las direcciones N y E, respectivamente.

Station	а	b
ASCÓ	2.87	-81.14
BEGUES	-9.07	59.57
CALDERS	12.46	26.22
CAN BARBA	-16.62	51.81
CAN JARDÍ	12.80	44.85
GARRAF	-11.29	26.02
MEQUINENZA	6.86	-26.76
PIEROLA	-45.60	-22.79
PLANA DEL VENT	-31.78	4.54
RUBÍ	19.33	64.96
SALLENTE	83.90	-63.63
SENTMENAT	9.52	102.88
VANDELLÒS	-25.57	7.14
VIC	-8.45	2.22

Constantes válidas para finales de octubre de 2011

En los nodos frontera hay incertidumbre por la omisión del circuito adyacente, y por tanto debemos obviar el cálculo de las GICs en los mismos

Station	а	b
ASCÓ	2.87	-81.14
BEGUES	-9.07	59.57
CALDERS	12.46	26.22
CAN BARBA	-16.62	51.81
CAN JARDÍ	12.80	44.85
GARRAF	-11.29	26.02
MEQUINENZA	6.86	-26.76
PIEROLA	-45.60	-22.79
PLANA DEL VENT	-31.78	4.54
RUBÍ	19.33	64.96
SALLENTE	83.90	-63.63
SENTMENAT	9.52	102.88
VANDELLÒS	-25.57	7.14
VIC	-8.45	2.22

Constantes válidas para finales de octubre de 2011

2) CALCULO DE LAS GIC'S EN CADA TRANSFORMADOR

La corriente total que fluye en el nodo se comparte entre sus neutros. Las constantes a_T y b_T se derivan de las constantes a y butilizando el divisor de corriente correspondiente:

```
I_{GIC}(t) = a_T E_x(t) + b_T E_y(t)
```

Las GICs dependen de la longitud y de la geometría de las líneas que confluyen en ese nodo con respecto a la dirección del campo incidente y, a su vez, del número y resistencias de los transformadores.

Station	Number of trafos	Transformer	а	b	a _r	b _r
ASCÓ	3	TG1	2.87	-81.14	1.22	-34.51
		TG2			1.22	-34.51
		TR3			0.43	-12.12
REGUES	2	ATR3	-9.07	59.57	-4.53	29.78
BEGGES		ATR4			-4.53	29.78
CALDERS	1	TR1	12.46	26.22	12.46	26.22
	2	TR6	-16.62	51.81	-8.31	25.91
		TR7			-8.31	25.91
CAN JARDÍ	1	ATR4	12.80	44.85	12.80	44.85
GARRAF	1	TR1	-11.29	26.02	-11.29	26.02
MEQUINENZA	1	ATR2	6.86	-26.76	6.86	-26.76
PIEROLA	2	TR1	-45 60	-22 79	-22.61	-11.30
		ATR4	40.00	-22.19	-22.99	-11.49
PLANA DEL VENT	2	TG1	-31.78	4.54	-15.89	2.27
		TG2			-15.89	2.27
RUBÍ	2	ATR7	10 33	64.96	10.20	34.29
		ATR8	10.00		9.13	30.67
SALLENTE	4	TG1	83.90	-63.63	21.54	-16.34
		TG2			21.20	-16.08
		TG3			20.63	-15.65
		TG4			20.52	-15.57
SENTMENAT	3	ATR2	9.52	102.88	3.12	33.72
		ATR3			3.34	36.07
		ATR4			3.06	33.09
VANDELLÒS	3	TR1	-25.57	7.14	-5.76	1.61
		TR2			-6.92	1.93
		TG1			-12.89	3.60
VIC	4	ATR1	-8.45 2.22	2.22	-1.01	0.27
		ATR2			-1.25	0.33
		ATR3		-1.25	0.33	
		ATR4			-4.95	1.30

Según la configuración actual de la red y con todos los elementos funcionando

Según la configuración actual de la red y con todos los elementos funcionando

Análisis de vulnerabilidad de la red

Subestación	Transformador	a _T	b _T
CAN JARDÍ	ATR4	20,1	58,7
RUBÍ	ATR7	16,2	45,7
RUBÍ	ATR8	14,5	40,8
SENTMENAT	ATR2	5,0	38,6
SENTMENAT	ATR3	5,3	41,2
SENTMENAT	ATR4	4,9	37,8
ASCÓ	TG1	-7,1	-49,4
ASCÓ	TG2	-7,1	-49,4

Transformadores más susceptibles a las GICs según la magnitud de sus constantes de red

Análisis de vulnerabilidad de la red

Direcciones del campo geoeléctrico en las que se obtiene la GIC máxima en cada uno de los transformadores aplicando un campo eléctrico de un 1 V/Km. La longitud de los barras es proporcional a la magnitud de la GIC

Validación del modelo con medidas reales

GICs medidas (rojo) y calculadas según nuestro modelo (azul) en el transformador TR1 de Vandellòs para el evento del 24-25 de octubre de 2011. Se asumió un valor uniforme de la conductividad de la Tierra de 10⁻⁴ S/m.

Validación del modelo con medidas reales

GICs medidas (rojo) y calculadas según nuestro modelo -usando constantes empíricas-(azul) en el transformador TR1 de Vandellòs para el evento del 24-25 de octubre de 2011. Se asumió un valor uniforme de la conductividad de la Tierra de 10⁻⁴ S/m.

CONCLUSIONES

- El análisis forense ha revelado que el mayor rango de variación del campo geomagnético en el Observatorio del Ebro alcanzó 177 nT/min.
- Este límite empírico superior es mucho menor que las intensidades que han provocado impactos en redes eléctricas en regiones de latitudes más altas ("Quebec" fue de 479 nT/min), aunque han sido observados impactos con niveles < 100 nT/min.
- El modelo retrospectivo predice campos eléctricos del orden de 0.7 V/m y corrientes de más de 40 A en los neutros de determinados transformadores.
- La correlación entre los resultados del modelo y las GICs medidas desde otoño de 2011 es satisfactoria.

PASO SIGUIENTE: ESTADÍSTICA DE VALORES EXTREMOS

SPACE WEATHER, VOL. 9, S10001, doi:10.1029/2011SW000696, 2011

Quantifying extreme behavior in geomagnetic activity

Alan W. P. Thomson,¹ Ewan B. Dawson,¹ and Sarah J. Reay¹

SPACE WEATHER, VOL. 10, S02012, doi:10.1029/2011SW000734, 2012

On the probability of occurrence of extreme space weather events

Pete Riley¹

Received 16 September 2011; revised 18 November 2011; accepted 22 December 2011; published 23 February 2012.

[1] By virtue of their rarity, extreme space weather events, such as the Carrington event of 1859, are difficult to study, their rates of occurrence are difficult to estimate, and prediction of a specific future event is virtually impossible. Additionally, events may be extreme relative to one parameter but normal relative to others. In this study, we analyze several measures of the severity of space weather events

GICs que se registrarían en cada uno de los transformadores en el caso de que realmente se produjera los valores extremos en el periodo de retorno de 100 años en el Observatorio del Ebro, con indicación de los límites de confianza al 95%. A partir de nuestro modelo de red y de los resultados de *Thomson et al.* (2012) para nuestras latitudes, y asumiendo que el evento fuese de carácter impulsivo según el Norte geomagnético.

Subscribe Journal Services Paper in Press E-Alert Sign-Up **Journal Details** 2 **RSS Feeds** SPACE WEATHER, doi:10.1029/2012SW000793 Cited By Home **X** Reference Tools Geomagnetically Induced Currents in a Power Grid of northeastern Spain AGU Journals Contact AGU Key Points Article Resources Keywords · A prediction of GICs on a power grid in northeastern Spain has been developed PIP PDF GIC · The agreement between modeled and measured GICs is satisfactory Power Grids E-mail Abstract · The work constitutes the first modeling effort of GIC in Southern Europe Spain Permissions Index Terms C SHARE Authors: 7904 - Geomagnetically induced currents Joan Miquel Torta 7914 - Engineering for hazard Join AGU mitigation Lluis Serrano 7934 - Impacts on technological systems Joan R Regué 7954 - Magnetic storms Albert M Sánchez Elionor Roldán

Using the geomagnetic records of Ebro geomagnetic observatory and taking the plane wave assumption for the external current source and a homogeneous Earth conductivity, a prediction of the effects of the geomagnetic activity on the Catalonian (northeastern Spain) power transmission system has been developed. Although the area is located at mid-latitudes, determination of the geoelectric field on the occasion of the largest geomagnetic storms during the last solar cycles indicates amplitudes which are higher then those recorded in Southern Africa, where some transformer failures on large transmission systems have been

ció f the gr rd the ork na electric f such ex me usi neutr grid, so Although the agreement is quite satisfa ry, results indicate that better knowledge of the ground conductivity structure is needed. This represents the first attempt to study and measure GICs in Southern European power grids, a region considered to have low GIC-risk up to the present.

Received 26 March 2012; accepted 21 April 2012.

Citation: Torta, J. M., L. Serrano, J. R. Regué, A. M. Sánchez, and E. Roldán (2012), Geomagnetically Induced Currents in a Power Grid of northeastern Spain, Space Weather, doi:10.1029/2012SW000793, in press.

24-26 de marzo de 1991

Según la configuración actual de la red y con todos los elementos funcionando