

Efectos geomagnéticos en los sistemas tecnológicos terrestres. Evaluación de riesgos en los sistemas de transporte de energía eléctrica

J. Miquel Torta

Observatori de l'Ebre. CSIC – URL

Con material de

Ari Viljanen, Alan Thomson, K. Turnbull, J. Wild, A. Pulkkinen

El space weather se refiere a las condiciones en el Sol y en el viento solar, la magnetosfera y la ionosfera que pueden influir en el rendimiento y la fiabilidad de los sistemas tecnológicos espaciales y terrestres y pueden poner en peligro la salud humana.

Ha sido un modo de rebautizar lo que tradicionalmente se conocía como Física Solar-Terrestre.

¿Cómo clasificar los eventos/efectos del space weather?

Dominios

Espacio interplanetario

- Magnetosfera
- Ionosfera
- Atmosfera neutra
- Superficie terrestre

• Fenómenos

- Energetización de partículas
- Degradación de señales de radio
- Radiación cósmica

- Eventos de partículas solares
- Aumento fricción órbita satélites
- Corrientes inducidas geomagnéticamente (GICs)

• Sistemas

- Aeronaves / naves espaciales
- Comunicaciones
- Posicionamiento / navegación

- Transporte de energía eléctrica
- Líneas ferroviarias
- Gasoductos / oleoductos

- Escalas temporales
 - Efectos inmediatos

- Efectos acumulativos

Descripción del fenómeno

- Bajo condiciones perturbadas del Sol, el grado de ionización en la ionosfera aumenta y se produce un aumento importante de los sistemas de corrientes eléctricas

-En esas condiciones perturbadas los *electrojets* aurorales puede llegar a medir del orden de un MA

-Al ser estas corrientes variables en el tiempo y la Tierra conductora, en el interior de la Tierra y en los océanos aparecen corrientes inducidas secundarias

-La superposición de los campos magnéticos debidos a las corrientes en la ionosfera y magnetosfera causa variaciones importantes del campo geomagnético conocidas como tormentas geomagnéticas

- Como consecuencia de la ley de Faraday, asociadas a las variaciones en el tiempo del campo magnético se induce un campo eléctrico en la superficie de la Tierra. Este campo eléctrico actúa como una fuente de voltaje a través de las redes

Figure: John Kappenman (Metatech)

Los sistemas actuales de transporte de energía eléctrica consisten en las centrales generadoras interconectadas por líneas eléctricas con voltajes de transmisión fijos controlados por los transformadores de las subestaciones.

Las tensiones de la red usadas suelen oscilar entre los 400 y los 110 KV Tendencia hacia una mayor tensión y una baja resistencia de línea Magnitud del voltaje inducido relacionado con la distancia entre nodos

Efectos en las redes de transporte eléctrico

- Las GICs pueden saturar los núcleos de los transformadores, haciendo que operen en la zona de saturación de la curva de magnetización (B-H)

- La demanda de potencia reactiva y los armónicos del sistema aumentan
- Demandas de energía reactiva de esta magnitud pueden causar graves variaciones de tensión en el sistema

 El cambio en el tamaño del material ferromagnético (magnetostricción) entre los estados saturado e insaturado a 100 veces por segundo (a 50 Hz) produce calentamiento, ruido y daños por vibración mecánica

Extreme effect: New Jersey, March 1989: melted transformer

Source: image courtesy of Public Service Electric and Gas and Peter Balma

Resultados de análisis de gases disueltos (ppm) para dos transformadores similares en generadores de Sudáfrica (con las etiqueta 1 y 2). Esto ilustra la generación continua de gas después de la tormenta geomagnética (pocas horas) y una sensibilidad aparente a la carga del transformador (MW - la misma escala) durante los meses siguientes. Ambos transformadores fueron retirados del servicio aproximadamente 6 meses después de la tormenta. Extraída de Thomson et al. (2010) Afectaciones en conductos de acero para transportar líquidos o gas

- Usan una protección catódica para minimizar la corrosión al mantener el acero a un potencial negativo con respecto al suelo

- Las GICs pueden causar cambios en el potencial de la tubería a suelo, aumentando el riesgo de corrosión en las grandes tormentas geomagnéticas

- Pueden contribuir a reducir la vida útil del conducto

Afectaciones en líneas ferroviarias

- El control de voltaje de CC de los relés de conmutación se produce a través de los carriles, por lo tanto son potencialmente susceptibles a un campo geoeléctrico significativo (~ pocos V / km).
- Solamente hay un caso relatado en 1982 y un estudio estadístico de correlación entre anomalías registradas en una línea y actividad geomagnética.

Las grandes tormentas geomagnéticas desde 1868 identificadas por el índice geomagnético aa*. Superpuesto en rojo se presenta la evolución del número mensual suavizado de manchas solares. Se ha utilizado un umbral de 80 nanoTeslas para identificar mejor las mayores tormentas. Extraída de *Thomson et al.,* (2010). Severe Space Weather Events--Understanding Societal a Buscar libros Búsqueda avanzada de libros

Índice 👻 Cubierta delantera 🚺 💽

Conclusiones del Workshop del NRC para evaluar las repercusiones sociales y económicas del Space Weather:

• El registro histórico revela que el clima espacial ha sido tanto o incluso más severo que algunos de los acontecimientos recientes, p.e., el evento de Carrington en 1859 y la gran tormenta geomagnética de mayo de 1921

• Tales fenómenos extremos, aunque sean raros, es probable que vuelvan a ocurrir en algún momento del futuro.

Transformer failures in regions incorrectly considered to have low GIC-risk

C. T Gaunt, G. Coetzee

Fallo en un transformador de 700MVA en una central eléctrica sudafricana después de la tormenta de *Halloween* de octubre de 2003. Extraída de *Thomson et al.*, (2010).

Click Here For Full Article

Calculation of geomagnetically induced currents in mid- to low-latitude power grids based on the plane wave method: A preliminary case study

SPACE WEATHER, VOL. 7, S03002, doi:10.1029/2008SW000417, 2009

PUBLS. INST. GEOPHYS. POL. ACAD. SC., C-99 (398), 2007

Study of Geomagnetically Induced Current from Time Derivative of the Earth's Magnetic Field

SPACE WEATHER, VOL. 5, S04004, doi:10.1029/2006SW000282, 2007

Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study

Nalin B. Trivedi,¹ Ícaro Vitorello,² Wanderli Kabata,² Severino L. G. Dutra,² Antonio L. Padilha,² Mauricio S. Bologna,² Marcelo B. de Pádua,² Alexandre Pinhel Soares,³ Guilherme Sarcinelli Luz,³ Fabio de A. Pinto,³

Modelización de las GICs

✓Geofísica

- Determinación del campo eléctrico en la superficie
 - Método de imagen compleja
 - Método de sistemas de corrientes esféricas elementales
 - ✓Suposición de onda plana
- Ingeniería Eléctrica
- Cálculo del flujo de las GICs en la red eléctrica
 - Modelo del circuito en CC.

DATOS CLAVE: registros de los observatorios geomagnéticos

Variación del campo geomagnético (componente horizontal - ∆H, en nT) y su derivada (en nT/min) correspondientes a la *Halloween storm* (29-31 octubre 2003) en el Observatorio de Hermanus (HER), Sudáfrica.

Componentes Este (Ey) y Norte (Ex) del campo geoeléctrico (en V/Km) calculadas a partir de las variaciones geomagnéticas en el Observatorio de Hermanus el 29 de Octubre de 2003, asumiendo una conductividad del subsuelo de 10⁻³ S/m.

Modelización de las GICs

Geofísica

- Determinación del campo eléctrico en la superficie
 - Método de imagen compleja
 - Método de sistemas de corrientes
 esféricas elementales
 - Suposición de onda plana

✓Ingeniería Eléctrica

- Cálculo del flujo de las GICs en la red eléctrica
 - Modelo del circuito en CC.

Modelización de la Red Eléctrica:

Cálculo de las corrientes (CC.) que circulan a tierra en cada nodo por aplicación de las leyes de Kirchhoff \rightarrow Formulación matricial

Lehtineen & Pirjola, 1985

Datos necesarios para calcular las matrices de impedancia de la red y de conexión a tierra para el cálculo de las GIC:

· Posiciones geográficas de cada subestación y conexiones

· Resistencias de las líneas

Resistencia de la línea, longitud, núm. de conductores/fase y núm. de líneas

· Resistencias de cada subestación

Los valores de resistencia de puesta a tierra de cada subestación son la suma de las resistencias de los transformadores con todas las fases en paralelo y resistencias de las reactancias (se necesita el número de transformadores y reactancias de la subestación, su tipo de configuración, la resistencia de la posible reactancia y la resistencia real de puesta a tierra de cada transformador)

Posibles configuraciones de transformadores (Mäkinen, 1993)

- La tubería de acero está en contacto continuo con el suelo
- fuente distribuida

Figura: Antti Pulkkinen

Combinación de los apartados de Geofísica y de Ingeniería Eléctrica:

1) CALCULO DE LAS GIC'S EN CADA NODO

Una vez el campo eléctrico asociado a las variaciones geomagnéticas es conocido y los elementos de las matrices de impedancia de la red resueltos, el cálculo de las GIC's es directo:

$$I_{GIC} = aE_x + bE_y$$

donde *a* y *b* son parámetros constantes para cada nodo que dependen de la geometría y de las resistencias de la red.

Componentes del campo geoeléctrico a partir de las variaciones geomagnéticas en el Observatorio de Hermanus (Sudáfrica) y las GICs esperadas (en Amperios), en la subestación de Grassridge el 29 de Octubre de 2003, a partir de la configuración y los parámetros resistivos de la red sudáfricana de 400 kV según Koen (2002):

a = -80 A Km/V

```
b = 15 A Km/V
```

Observatorio del Ebro. Lat. Geomagnética = 43.1°

Geomagnetic Lat = -34.1°

Geomagnetic Lat = 43.1°

 Variación del campo geomagnético (componente horizontal - ∆H, en nT) y su derivada (en nT/min) correspondientes a las *Halloween storms* (29-31 octubre 2003) en el Observatorio de Hermanus (HER), Sudáfrica, y en el Observatorio del Ebro (EBR)

Assimilative model contour map of observed delta Bh over the Northern Hemisphere at 0652 UT, 29 October 2003 (using a 500 nT contour interval). From Kappenman (2005)

CONCLUSIONES

- La magnitud de las GICs depende de diversos factores, como la configuración espacial de la red, la distancia entre nodos, las resistencias o la conductividad de la Tierra
- No se pueden descartar efectos similares a los sucedidos en Sudáfrica
- Es necesario un análisis de la vulnerabilidad de la red española frente a las tormentas magnéticas.

Endesa Distribución

Predicción y monitorización de corrientes inducidas geomagnéticamente en el sistema eléctrico de Endesa y evaluación de riesgos (GIC)

Propuesta de proyecto

Fecha: 21/10/2010

Empresa: Endesa Distribución

Fecha: 21/10/2010

Documento: Propuesta de proyecto

Página: 1/16

Event	Date	Day Num	$\max \left \frac{d\mathbf{B}}{dt} \right \left[\mathrm{nT}/\mathrm{min} \right]$
1	13 Mar 1989	72	1079.6
2	8 Nov 1991	312	804.1
3	21 October 1989	294	618.6
4	1 Nov 1991	305	515.2
5	7 Feb 1986	38	464.5

ESK, Scotland: Large geomagnetic events in the period 1983-2000. Minute mean data were used to the calculate the maximum time-derivative. From McKay (2003)

Event	Date	Day Num	max dH/dt [nT/min]					
1	13 Jul 1982	194	110.0					
2	13 Mar 1989	72	82.7					
3	5 Jun 1991	156	64.0					
4	8 Nov 1991	312	50.2					
5	21 Oct 1989	294	24.6					

EBR, Northeastern Spain: Large geomagnetic events in the period 1975-1999. Minute data digitized from LaCour analogic records.

Black line shows the orientation and the length of the 187 kV transmission line segment and the square indicates the Memanbetsu substation where GIC were observed. Geographic coordinates are used.

		$\max \left \frac{dH}{dT} \right $	$\max GIC $	
Event	Date(s)	Day Num	[nT/min]	[A]
1	13 Mar 1989	72	1079.6	28 (36)
2	8 Nov 1991	312	804.1	26 (34)
3	21 October 1989	618.6	555.3	13 (17)
4	1 Nov 1991	305	515.2	14 (18)
5	7 Feb 1986	38	464.5	13 (17)

Maximum minute-mean predicted GIC at Neil Transformer (Scottish Power Grid) for each event identified in Section 3.4.Shown in brackets are estimated maximum one-second GIC assuming minutemean GIC areunderestimated by 30%. (McKay, 2003)

The list of 10 largest GIC events between 1986 and 2008. The maximum absolute value of the modeled GIC was used to measure the strength of an event. The last column indicates the geomagnetic storm phase associated with a modeled GIC peak value.

Year	Month	Day	Hour	Minute	GIC [A]	Storm phase			
1989	03	13	22	09	25	Early main phase			
2003	10	30	19	55	21	Early main phase			
1986	02	08	20	51	17	Early main phase			
2004	11	10	09	42	15	Late main phase			
2001	11	06	02	03	15	Early main phase			
1999	09	22	21	51	1 4	Late main phase			
1991	03	24	04	03	13	Sudden commencement			
2000	07	15	21	37	12	Late main phase			
1991	06	13	01	11	12	Sudden commencement			
2004	07	27	11	57	12	Late main phase			

CONCLUSIONES

- La magnitud de las GICs depende de diversos factores, como la configuración espacial de la red, la distancia entre nodos, las resistencias o la conductividad de la tierra
- No se pueden descartar efectos similares a los sucedidos en Sudáfrica
- Es necesario un análisis de la vulnerabilidad de la red española frente a las tormentas magnéticas.
- Se pueden monitorizar las GICs en determinadas subestaciones de la red mediante la instalación de transductores de efecto Hall

Combinación de los apartados de Geofísica y de Ingeniería Eléctrica:

1) CALCULO DE LAS GIC's EN CADA NODO

Una vez el campo eléctrico asociado a las variaciones geomagnéticas es conocido y los elementos de las matrices de impedancia de la red resueltos, el cálculo de las GIC's es directo:

$$I_{GIC} = aE_x + bE_y$$

donde *a* y *b* son parámetros constantes para cada nodo que dependen de la geometría y de las resistencias de la red.

2) CUANDO LAS GIC'S EN CADA NODO SE MIDEN TAMBIÉN:

$$I_{GIC} = c(aE_x + bE_y)$$

donde *c* se usa para ajustar las GIC's teóricas (predichas) a las observadas

From Ngwira et al., 2008

CONCLUSIONES

- La magnitud de las GICs depende de diversos factores, como la configuración espacial de la red, la distancia entre nodos, las resistencias o la conductividad de la tierra
- No se pueden descartar efectos similares a los sucedidos en Sudáfrica
- Es necesario un análisis de la vulnerabilidad de la red española frente a las tormentas magnéticas.
- Se pueden monitorizar las GICs en determinadas subestaciones de la red mediante la instalación de transductores de efecto Hall
- El análisis es posible gracias a que en la Península disponemos de tres observatorios geomagnéticos

Medio ambiente

el Periódico 25 Martes, 14 de marzo de 1989

La mayor tormenta solar de los últimos años amenaza la Tierra

L.A. FERNÁNDEZ HERMANA

Barcelona. – Las erupciones en el campo magnético del Sol pueden afectar a la Tierra intensamente esta semana. Las radiaciones emitidas durante esta actividad solar afectarán a las comunicaciones por radio y televisión, y podrían tener algún efecto sobre la salud de los seres vivos si la capa de ozono fuera incapaz de filtrarlas.

Las transmisiones de datos por ordenador también podrán verse perturbadas si se realizan en algunas de sus fases por radio, o si se altera el voltaje en las líneas de alta tensión, debido a la intensidad de la lluvia de partículas. En anteriores ocasiones estas tormentas magnéticas solares ya han destruido redes de distribución de electricidad.

La duración de una erupción solar puede oscilar desde minutos a días. Para que una de estas erupciones afecte a la Tierra, ésta debe estar orientada hacia el planeta. Especialistas de la base aérea norteamericana de Holloman (Nuevo México) han confirmado que el Sol tuvo el pasado jueves la erupción electromagnética más fuerte jamás registrada por el hombre. Esta erupción fue segui-

Las erupciones en el campo magnético del Sol aumentan esta semana

Las radiaciones afectarán a la radio y la televisión

El efecto en seres vivos depende de la capa de ozono

semana, de acuerdo con la rotación del Sol".

Según explicó a este diario Jordi Isern, astrofísico que ac-

La mancha ocupa el 1% de la superficie solar. La instantánea fue tomada en el observatorio del Ebro el 10 de marzo a las 11.10 horas

oscurecen, produciendo el fenómeno conocido como manchas solares.

campos más fríos y por eso se de la Tierra. Alrededor de las manchas se generan fulguraciones que emiten rayos ultravioletas, X v gamma. "La radiación

Observatorio del Ebro donde se estudia la ionosfera en particular, afirma que si la ionización es muy fuerte también las emisiones de televisión se verán perturbadas. "La reflexión de las ondas depende de su frecuencia y de los electrones. Las que transportan la señal de televisión no se reflejan y por eso se necesitan repetidores. Sin embargo, si la ionización es muy fuerte entonces las reflejaria". El resultado seria que en pantalla aparecerian emisiones de diferentes estaciones de televisión y otras interferencias.

Barcos y aviones

El científico no descartó que estas perturbaciones alcancen también a los satélites. Aunque normalmente están protegidos, es difícil que se haya previsto una erupción tan descomunal como la de esta semana y quizá su electrónica resulte dañada. "Todas las comunicaciones con los satélites son por radio. Es fácil que, al emitir órdenes para fijar su posición, sean alteradas al atravesar las zonas ionizadas y se cometan errores", apunta el padre Albera. Perturbaciones parecidas pueden afectar a las comunicaciones de los barcos y los aviones.

El peligro está en las radiaciones ultravioleta del astro

La ionosfera es una capa normalmente neutra, donde el núcleo de los átomos y su número de electrones neutralizan sus respectivas cargas eléctricas. Pero las radiaciones la ionizan; es decir. arrancan un electrón de los átomos y éstos quedan cargados positivamente. Este fenómeno es el que perturba la normal propagación de las ondas de radio, que son absorbidas por los iones.

La radiación que ioniza la ionosfera es la ultravioleta. Para Manuel Vázquez, del Instituto de Astrofísica de Canarias, ésta es otra fuente de posibles problemas: "La Tierra tiene una serie de pantallas que nos protegen de estos exabruptos del Sol. Por eso ha sido posible la vida a pesar de la intensidad de sus erupciones periódicas. Pero si las pantallas están tocadas, como parece ocurrir con la capa de ozono, en-

Ingrese su nomb

F773

Millones de toneladas de partículas de plasma salieron del sol en dirección a la Tierra a una velocidad de 900 kilómetros por hora, sin que hubiera que lamentar consecuencias.

<u>A</u> rchivo <u>E</u> ditar <u>V</u> er	Hi <u>s</u> torial <u>M</u> arcadores Herramien <u>t</u> as Ay <u>u</u> da									
()) · (🕞 🗸 🕝 🗋 http://isgi.cetp.ipsl.fr/cgi-bin/isgi/sc5.exe									
Monthly files										
The format pr	<u>aa, Kpa INDICES</u> resently used is one line for each day, as following:									
Date :	Day/Month									
Q.D. :	truly magnetically very quiet (C) and quiet (K) periods of 24 and 48 hours and 5 international quietest days (*)									
aa_3h_ind :	8 three hourly values of aa, in nT (-1 correspond to missing data)									
Aa :	daily mean value of aa, in nT									

February 2011

Date	Q.D.				aa_3h_ind							Aa	Kpa_3h_ind						
01/02				24	24	38	12	12	32	32	16	23	30	30	4-	20	20	3+	3+
02/02	С	K		24	12	8	12	12	12	12	5	12	30	20	1+	20	20	20	20
03/02	С	K		5	2	5	2	2	2	2	2	2	1-	00	1-	00	00	00	00
04/02				12	24	24	24	16	16	115	102	41	20	30	30	30	2+	2+	60
05/02				45	32	24	24	12	24	24	24	26	40	3+	30	30	20	30	30
06/02				12	16	24	24	24	45	12	20	22	20	2+	30	30	30	40	20
07/02	С	С		5	8	2	5	8	12	5	20	8	1-	1+	00	1-	1+	20	1-
08/02	С	С		12	16	5	8	5	2	5	12	8	20	2+	1-	1+	1-	00	1-
09/02	С	С		2	5	2	8	8	5	5	2	4	00	1-	00	1+	1+	1-	1-
10/02	С	С		2	12	16	12	12	2	8	12	9	00	20	2+	20	20	00	1+
11/02	K	С		8	8	8	8	2	12	32	16	11	1+	1+	1+	1+	00	20	3+
12/02	С	С		8	16	12	5	8	5	12	2	8	1+	2+	20	1-	1+	1-	20
13/02	С	С		5	2	8	2	5	2	5	8	4	1-	00	1+	00	1-	00	1-
14/02				2	5	5	5	12	32	59	80	25	00	1-	1-	1-	20	3+	5-
15/02				12	12	16	38	24	16	12	24	19	20	20	2+	4-	30	2+	20
16/02	С	С		5	12	8	8	5	2	2	5	5	1-	20	1+	1+	1-	00	00
17/02	С			5	5	5	5	8	8	12	8	7	1-	1-	1-	1-	1+	1+	20
18/02				32	103	81	59	24	32	24	20	46	3+	6-	5+	5-	30	3+	30
19/02	С			20	5	8	8	16	12	8	8	10	3-	1-	1+	1+	2+	20	1+

Las grandes tormentas geomagnéticas desde 1868 identificadas por el índice geomagnético aa*. Superpuesto en rojo se presenta la evolución del número mensual suavizado de manchas solares. Se ha utilizado un umbral de 80 nanoTeslas para identificar mejor las mayores tormentas. Extraída de *Thomson et al.,* (2010).

CONCLUSIONES

- La magnitud de las GICs depende de diversos factores, como la configuración espacial de la red, la distancia entre nodos, las resistencias o la conductividad de la tierra
- No se pueden descartar efectos similares a los sucedidos en Sudáfrica
- Es necesario un análisis de la vulnerabilidad de la red española frente a las tormentas magnéticas.
- Se pueden monitorizar las GICs en determinadas subestaciones de la red mediante la instalación de transductores de efecto Hall
- El análisis es posible gracias a que en la Península disponemos de tres observatorios geomagnéticos
- No hay que ser catastrofistas. Nuestra afectación será mucho menor que en zonas aurorales

