Impacts of Severe Space Weather on Critical Infrastructure

- JASON: a group of academic scientists, mathematicians, and engineers who advise the federal government on technical issues
- For the 2011 Summer Study, DHS tasked JASON to
 - Assess the threat to the electric grid from severe space weather
 - Examine mitigation possibilities
 - Consider how warnings can be improved
- The study included
 - Briefings
 - Visiting the Space Weather Prediction Center
 - Extended communications with agency people in
 - the U.S., Canada, and Finland

The Threat

It is real and very serious

- Grid behavior is not understood well enough to make accurate predictions of damage from solar storms
- Full-up modeling of the grid is needed
- We heard of large-scale simulations at Oak Ridge, but we could not learn details. Nor could NERC.
- We were told that NERC is developing a national grid monitoring capability
 - Owing to legal & business constraints, data will be kept only for a week
 - The data problem must be fixed to permit post-event forensics and model testing

Mitigation

- At greater risk than most of the U.S., Finland and Quebec have avoided catastrophic damage by
 - Careful transformer design
 - Installing series capacitors in transmission lines & blocking capacitors on transformers

Protecting valuable equipment from permanent damage is more important than preventing short blackouts, e.g.

- Setting relays to trip before GIC harmonics damage gear
- Mandating component design standards
- Blocking GIC with capacitors in transformer neutrals, coupled with short-circuit protection
- Using small series-blocking capacitors in lines where neutralcurrent blocking is not feasible

Observations needed for Warnings

- Four research satellites supply the most important data
 - SOHO, launched in 1995 for a 2-year mission
 - ACE, launched in 1997 for a 6-year mission
 Confirms CME impact in 1 hour or less
 - STEREO A & B, launched in 2006 for a 14-year mission
 Supplies 3-D CME structure to initialize numerical projections
- Urgent need for sustained operational satellites
 - Keep DSCOVR on track as interim ACE replacement in 2014
 - Consider constellation of small craft in quasi-satellite orbits as permanent ACE replacement
 - Develop long-term plan for maintaining 3-D observations to replace STEREO

The Space Weather Enterprise

- Using the broader post-9/11 definition of national security, risks from severe space weather qualify as concerns
- Many tasks within federal agencies are working very well, but there are serious gaps between agencies
 - AF & NOAA space weather would be stronger if more tightly coupled
 - Investigate using AF sensors on NOAA satellites
 - A transition path & funding are needed to move NASA research models to NOAA operational forecasts
 - DOE work, e.g. wide-area grid monitoring, should be available to NERC

BACKUPS

Impacts of Severe Space Weather on the Electric Grid – November 2011 - (JSR-11-320)

Hydro Quebec: 2001-2002 Test

- Installed smaller capacitors between ground and neutral on 3-phase transformer, blocking GIC
- **\$100k per box**
- Fault protection required

Solar Observations from Lagrange Points

- Sun-earth gravity produces 5 potential saddle-points moving with earth
- ▶ L1: ≈ 0.01 AU from earth, CME arrive 30–60 min. before hitting earth
 - SOHO: initial detection from coronagraph
 - ACE: 30-60 minute warning based on B (3 components), particle speed, temperature, density
- **STEREO:** (2006 launch, angles opening at 22.5° /year)
 - imagers: EUV, white-light of corona (2) & heliosphere (for CME)

CME Warnings from Quasi-satellites

The quasi-satellite appears to make an oblong loop when viewed from the planet

SWx_Diamond

- **4** satellites
- 0.1 AU apart
- Warnings 10x earlier
- Low launch & insertion energies
- Science missions too

StCyr & Davila (2002)

Wiegert et al.

Consider a small constellation of cheap satellites in quasisatellite orbits for long-term near-earth CME warning system **Can increase 30-60 min warning times to several hours**

Impacts of Severe Space Weather on the Electric Grid – November 2011 - (JSR-11-320)