

Reducing Tsunami Risk through Early Warning System, Preparedness and Awareness Information Workshop on NEAMTWS

Economic Loss Assessment in Spain due to Tsunami Impact (A forthcoming IGME-CCS agreement)

Miguel Llorente Isidro, Ph.D.

m.llorente@igme.es Project Manager Spanish Geological Survey Escuela Nacional de Protección Civil Rivas (Madrid) Spain

25-26 September 2017

Summary

General framework The insurance sector and the NH Solvency II Directive The Spanish Insurance Compensation Consoritum **Risk assessment** Assessing chances Modelling initial conditions Modelling propagation Modelling floods Vulnerability approach Valuable assets

Risk assessment

The circle of risk management **EVENT** life saving actions (rescue, evacuation) Monitoring and issuing early warnings reinforcing property defences scientific support & information scientific support during event building/reinforcing defences monitoring & information evacuation insurance (compensations) Warning Correcting other financial tools pre-event Preventing Post-event Planning, policy making and implementation (including insurance) knowledge development & public awareness, mapping hazards and risks

The bigger prevention the better

Losses in recent disasters and insurance

2016 Munich Re, Geo Risks Research, NatCatSERVICE

Disasters and insurance trends

US\$bn

Solvency II directive

Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009 on the **taking-up and pursuit of the business of Insurance and Reinsurance** (Solvency II)

One of the strong pillars deals with **the amount of capital** that EU insurance companies **must hold** in order to comply with solvency buffers regulated.

Its aiming at a minimum of 99,5% a year success for a 100 year return period (solvency)

The Consorcio de Compensación de Seguros (Insurance Compensation Consortium)

The CCS is a public business institution active since 1954 (63 years)

CCS manages a **public-private partnership insurance solution** covering extraordinary risks (natural catastrophes and terrorism) by means of <u>policies issued by private insurers</u> (property accidents life)

Natural catastrophes considered include:

earthquakestempesttsunamismeteoritesfloodsvolcanoes

Assessing chances

Joint effort of the most relevant actors of the Scientific Community Tsunamigenic sources **Workshop 6-7 November 2017 in University Malaga**

Modelling initial conditions of the tsunami triggering event

Will include modelling uncertainty Will include modelling wave propagation

Scenario	WD	Strike	Dip	Rake	Slip	Length	Width
ESCDB	2.50	96	20	90	8	500	90
MEF	0.50	290	70	270	6	80	20
MS	2.20	99	14	90	3	190	20
NPDB	1.00	142	40	90	10	243	80
PRT	7.60	86	20	23	8	500	110
SMT1	3.80	105	11	90	3	140	25
SMT2	4.00	95	10	90	3	150	25
WMT	3.90	100	9	90	4	290	30
WSCDB	2.60	53	17	90	7	500	90

Modelling propagation and inundation

Tsunami-HySEA (EDANYA research group) \rightarrow NLSWE:

$$\frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0,$$

$$\frac{\partial q_x}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x^2}{h} + \frac{g}{2}h^2\right) + \frac{\partial}{\partial y} \left(\frac{q_x q_y}{h}\right) = gh\frac{\partial H}{\partial x} - S_x,$$

$$\frac{\partial q_y}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q_x q_y}{h}\right) + \frac{\partial}{\partial y} \left(\frac{q_y^2}{h} + \frac{g}{2}h^2\right) = gh\frac{\partial H}{\partial y} - S_y.$$

 ρ density; g gravity;

 $H(\mathbf{x})$ bathymetry; $h(\mathbf{x}, t)$, water layer thickness;

 $(u_x(\mathbf{x}, t), u_y(\mathbf{x}, t))$ flow velocity;

$$q_x(\mathbf{x}, t) = u_x(\mathbf{x}, t)h(\mathbf{x}, t), \qquad q_y(\mathbf{x}, t) = u_y(\mathbf{x}, t)h(\mathbf{x}, t)$$
 fluxes;
 $S_f = (S_x, S_y)$ bottom friction effects.

$$\left\{ egin{array}{ll} S_x = -gh \, rac{n^2}{h^{4/3}} \, u_x \, \|m{u}\| \ S_y = -gh \, rac{n^2}{h^{4/3}} \, u_y \, \|m{u}\| \end{array}
ight. ,$$

Exposure

Vulnerability assessment

Papathoma Tsunami Vulnerability Assessment (D'all Osso et al, 2009; PTVA-3 (Relative vulnerability index)

$$RVI = \left(\frac{2}{3}\right) * (Sv) + \left(\frac{1}{3}\right) * (Wv)$$

Sv standardized structural vulnerability *Wv* water intrusion vulnerability

 $Sv^{ns} = Bv * Ex * Prot$

Bv standardized building vulnerability *Ex* standardized water depth *Prot* standardized level of protection

$$Bv^{ns} = \left(\frac{1}{423}\right) * \left(100S + 80M + 63G + 60F + 51Mo + 46So + 23Pc\right)$$

$$Prot^{ns} = \left(\frac{1}{301}\right)(100ProtBR + 73ProtNB + 73ProtSW + 55ProtW)$$

S scoring parameter given the **number of stages**, M scoring parameter addressing (spa) the **construction materials**, G and So spa the floor **hydrodynamics**, F spa **foundation depth**, Mo spa **movable objects**, Pc spa **preservation conditions**, Ex spa **flood depth** ProtBR spa building relative **location** (vs coastline), ProtNB spa existing **natural barriers**, ProtSW spa **seawall defences**, ProtW spa **other defences**

The IGME-CCS agreement scope

Purpose: maximum-most-likely monetary impact (€@2016) we take no responsibility of any other use of data

Scenario based analysis actual past or future events: out of scope aiming at *relevant monetary impact*

Exposure is *purely monetary*.
No such thing as property or life → only €
It has to be statistically fit

Vulnerability is *purely damage* (recovery expenses)

Schedule: 36 months

Information Workshop on NEAMTWS. 25-26 September 2017

Thank you for your attention

Economic Loss Assessment in Spain due to Tsunami Impact

Miguel Llorente Isidro, Ph.D.

m.llorente@igme.es Project Manager Spanish Geological Survey

